If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2=384
We move all terms to the left:
g^2-(384)=0
a = 1; b = 0; c = -384;
Δ = b2-4ac
Δ = 02-4·1·(-384)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*1}=\frac{0-16\sqrt{6}}{2} =-\frac{16\sqrt{6}}{2} =-8\sqrt{6} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*1}=\frac{0+16\sqrt{6}}{2} =\frac{16\sqrt{6}}{2} =8\sqrt{6} $
| F=3x+7 | | 10(x-5)=4x | | -9w-20=4(w+8) | | 2(4x+6)=(45x-6) | | 0.5x=0.0625 | | 20÷n+5=9 | | 7x/5=63/20 | | 7x/5=63/30 | | 2x+20-x=15 | | (0.36)÷x=-0.9 | | 5-9x÷6=-2 | | 15+20f=35f | | 49y2-70y=0 | | 9(8x-9.5)=-16.5+8x | | 7(x+1)=18x | | 2.2=8.6+y | | 24n*12n=343n | | (0.1x+5)(0.2x-1)(x-1)=0 | | (3.14)(x²)=50.24 | | -2=v/9-2 | | 1.3=(1.2,000,000+x)/400,000+x | | (5-9x/6)=-2 | | x+2x+50+40=180 | | 30+2x+x=90 | | -16.5+8x=9(2x-9.5) | | 4a^2+9=12a | | 2r^2+3=64 | | 3+x=1.3 | | (2x)^+4x-1248=0 | | 9v+39=2(v+2) | | x^2-5x=1=0 | | 16-3z=7 |